Kaiso Represses the Cell Cycle Gene cyclin D1 via Sequence-Specific and Methyl-CpG-Dependent Mechanisms

نویسندگان

  • Nickett S. Donaldson
  • Christina C. Pierre
  • Michelle I. Anstey
  • Shaiya C. Robinson
  • Sonali M. Weerawardane
  • Juliet M. Daniel
چکیده

Kaiso is the first member of the POZ family of zinc finger transcription factors reported to bind DNA with dual-specificity in both a sequence- and methyl-CpG-specific manner. Here, we report that Kaiso associates with and regulates the cyclin D1 promoter via the consensus Kaiso binding site (KBS), and also via methylated CpG-dinucleotides. The methyl-CpG sites appear critical for Kaiso binding to the cyclin D1 promoter, while a core KBS in close proximity to the methyl-CpGs appears to stabilize Kaiso DNA binding. Kaiso's binding to both sites was demonstrated in vitro using electrophoretic mobility shift assays (EMSA) and in vivo using Chromatin immunoprecipitation (ChIP). To elucidate the functional relevance of Kaiso's binding to the cyclin D1 promoter, we assessed Kaiso overexpression effects on a minimal cyclin D1 promoter-reporter that contains both KBS and CpG sites. Kaiso repressed this minimal cyclin D1 promoter-reporter in a dose-dependent manner and transcriptional repression occurred in a KBS-specific and methyl-CpG-dependent manner. Collectively our data validates cyclin D1 as a Kaiso target gene and demonstrates a mechanism for Kaiso binding and regulation of the cyclin D1 promoter. Our data also provides a mechanistic basis for how Kaiso may regulate other target genes whose promoters possess both KBS and methyl-CpG sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P120-Catenin Isoforms 1 and 3 Regulate Proliferation and Cell Cycle of Lung Cancer Cells via β-Catenin and Kaiso Respectively

BACKGROUND The different mechanisms involved in p120-catenin (p120ctn) isoforms' 1/3 regulation of cell cycle progression are still not elucidated to date. METHODS AND FINDINGS We found that both cyclin D1 and cyclin E could be effectively restored by restitution of p120ctn-1A or p120ctn-3A in p120ctn depleted lung cancer cells. When the expression of cyclin D1 was blocked by co-transfection ...

متن کامل

P-96: Appositional Expressions of Cyclin D1 and E2F1 Gene Machineries in Mycooestrogen Zeralenone-Induced Apoptosis in Testicular Tissue of Rats

Background: Zearalenone (ZEA) is known as a nonsteroidal oestrogenic mycotoxin produced by different species of Fusarium fungi. ZEA is known for its competitive effects with the natural 17-β estradiol to bind with the specific binding sites of the estrogen receptors (Ers). On the other hand, the cyclin family (especially cyclin D1) and E2F1 genes are the checkpoint genes involved in cell cycle....

متن کامل

Kaiso contributes to DNA methylation-dependent silencing of tumor suppressor genes in colon cancer cell lines.

Aberrant CpG methylation of tumor suppressor gene regulatory elements is associated with transcriptional silencing and contributes to malignant transformation of different tissues. It is presumed that methylated DNA sequences recruit repressor machinery to actively shutdown gene expression. The Kaiso protein is a transcriptional repressor expressed in human and murine colorectal tumors that can...

متن کامل

Cyclin D1 Represses Gluconeogenesis via Inhibition of the Transcriptional Coactivator PGC1α

Hepatic gluconeogenesis is crucial to maintain normal blood glucose during periods of nutrient deprivation. Gluconeogenesis is controlled at multiple levels by a variety of signal transduction and transcriptional pathways. However, dysregulation of these pathways leads to hyperglycemia and type 2 diabetes. While the effects of various signaling pathways on gluconeogenesis are well established, ...

متن کامل

The p120ctn-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG dinucleotides

The p120(ctn)-binding partner Kaiso is a new member of the POZ-zinc finger family of transcription factors implicated in development and cancer. To understand the role of Kaiso in gene regulation and p120(ctn)-mediated signaling and adhesion, we sought to identify Kaiso-specific DNA binding sequences and potential target genes. Here we demonstrate that Kaiso is a dual specificity DNA-binding pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012